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Abstract 
The flutter boundaries of six thin highly-swept delta-planform wings have been calculated. 

Comparisons are made between experimental data and results using several aerodynamic 

methods. The aerodynamic methods used include a subsonic and supersonic kernel function, 

second order piston theory, and a transonic small disturbance code. The dynamic equations of 

motion are solved using analytically calculated mode shapes and frequencies. 
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w f  flutter frequency 

I n t r o d u c t i o n  

The highly-swept delta wings found on typical NASP configurations and the associated flutter 

boundaries of such wings are of current interest. To study this problem it is helpful to first 

examine simple configurations for which test data is available such as wing-alone flate-plate 

models. Confidence can then be built in predicting flutter boundaries of such highly swept delta 

wings prior to studying more complex configurations. The aerodynamic methods used in 

calculating the flutter boundaries include FAST, ACUNN, second order piston theory and CAP- 

TSD. The first three methods were used to calculate the flutter boundaries of six delta wings for 

which experimental data exists in a report by Hanson and Leveyl. CAP-TSD was used to 

calculate the flutter boundary of only one delta wing. The experimental flutter data ranges from 

about Mach 0.6 to Mach 3.0. All six of the wings have modes that are highly cambered. Three or 

four measured modes were supplied in reference 1, however analytically calculated mode shapes 

were used. The purpose of the present paper is to provide an assessment of conventional flutter 

analysis methods by presenting calculated flutter characteristics for these wings. The related 

topics of angle-of-attack effects including vortex flows on such wings, and of pivoted controls of 

similar planforms are not considered. 

Pest ript ion of Mode Is and Test 

The six wings of reference 1 included three delta wings having 70°, 75", and 80" leading 

edge sweep, and three clipped delta wings having a taper ratio of 2/3, and of leading edge sweep 

54", 6 2 O ,  and 71". Planforms of the six delta wings tested by Hanson and Leveyl are shown in 

Fig. 1. Each of the models tested was of constant thickness except for leading and trailing edge 
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bevels. All six models had a root chord of one foot with the clipped-tip delta models having a 

taper ratio of 2/3. The three delta wings with leading edge sweep of 70"' 75", and 80" are 

referred to as Wings I A ,  l B ,  and l C ,  respectively. The three clipped-tip delta wings with 

leading edge sweeps of 54", 62", and 71" are referred to as Wings 2A, 28, and 2C, respectively. 

The above models were mounted as shown in Fig. 2 and were tested in the 9 inch x 18 inch 

blowdown supersonic aeroelasticity tunnel at the NASA Langley Research Center (which 

currently no longer exists). The degree of rigidity of their mounting apparently caused some 

fluctuation in the modal frequencies, which were remeasured for each test condition, as shown 

in Fig. 3. The solid lines in Fig. 3 represent the average of the measured frequencies. Wings 

l A ,  lB ,  and IC were tested both at subsonic and supersonic conditions up to a Mach number of 

3.0. Wings 2A, 26, 2C were tested at supersonic conditions up to a Mach number of 3.0. 

Vibration Modes 

The vibration modes used in this study were calculated using finite element models. Figure 

4 shows the model for Wing l A ,  used here as an example of the finite-element model. This 

model is made up of fifty-five quadrilateral combined membrane and bending elements, eleven 

triangular combined membrane and bending elements, and twelve evenly spaced beam elements 

at the root. The stiffness of these beam elements at the root was varied in order to tune the 

frequencies to match the average of the measured frequencies. The beam elements attempt to 

model the clamping of the wind tunnel model. Sixteen vibration modes were calculated, the first 

seven of which were used for flutter calculations. The mode shapes for the first four vibration 

modes are shown in Fig. 5. In the experimental results the flutter frequency is nearly the 

second modal frequency. This mode is a torsional mode with the node line being orthogonal to the 

root at about 70 percent from the root leading edge and extending out the span. 
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Initially the experimentally measured modes were used in the flutter study. However these 

mode shapes were found to be nonorthogonal when the off diagonal generalized masses were 

calculated. The probable cause is the relatively few points which define the mode shapes and 

measurement accuracy. When the measured modes were used, the third or fourth modes were 

often found to cause "hump" modes which occurred at lower flutter speeds than the principle 

second mode crossing. Experimental results show that the flutter frequency is always close to 

the second natural vibration frequency. 

D D  
. .  

The structural equations of motion were solved using the generalized aerodynamic forces 

from four different programs including: (1) "A Steady and Oscillatory Kernel Function Method 

for Interfering Surfaces in Subsonic, Transonic and Supersonic Flow" by Atlee Cunningham 

hereafter referred to as ACUNN,* (2) FAST,4 (3) second order piston theory,6 and (4) CAP- 

TSD5. Each of these programs is capable of calculating the aerodynamics for subsonic flows 

while ACUNN and CAP-TSD can calculate supersonic flows as well. Brief descriptions of each of 

the three codes (ACUNN, FAST and CAP-TSD) follow. 

ACUNN is based on linear lifting surface theory and relates the pressure distribution on an 

oscillating wing to the downwash at specified control points. A structural surface spline in the 

code interpolates the mode shapes at the control points. The generalized forces are used by the 

STABCAR3 program to perform the flutter calculations. STABCAR is a program which 

determines the characteristic roots of flexible aircraft by using a modal formulation integrated 

with the unsteady aerodynamic forces. 

FAST, which stands for Flutter Analysis System, consists of a group of programs used to 

perform flutter calculations. A subsonic kernel function is used in calculating the generalized 
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forces. The mode shapes and flutter calculations are based on a V-g type of analysis. All of the 

calculations made with FAST use a 10x10 collocation grid. 

CAP-TSD is an acronym for Computational Aeroelasticity Program - Transonic Small 

Disturbance. This code is based on the unsteady transonic small disturbance (TSD) equation and 

is capable of calculating unsteady flows about complete aircraft. The TSD equation is solved 

using an approximate factorization algorithm. CAP-TSD requires no special grid generating 

program since it uses a Cartesian grid. This makes the modeling of complex geometries much 

simpler. 

Results and Discuss io0 

The following results consist of comparisons of experimental and theoretical flutter 

characteristics at the flutter boundary, namely, flutter speed index versus Mach number, and 

flutter frequency ratio versus Mach number. 

Results for Wins 18 

The Wing 1A flutter boundary, Fig. 6, is plotted as flutter speed index, which is 

proportional to the square root of dynamic pressure, versus Mach number. The boundary 

predicted by FAST shows very good agreement with experiment. The supersonic results 

calculated with ACUNN show fairly good agreement with experiment although at Mach 2.5 a 

"hump" mode was present which caused a lower flutter speed to be predicted as indicated by the 

flagged triangle. The hump mode in this case was caused by Mode 3 going unstable first. The 

unflagged triangle at Mach 2.5 indicated the speed at which Mode 2 becomes unstable. In all the 

other calculations Mode 2 goes unstable first. The agreement between piston theory and 

experiment is surprisingly good even for the lower supersonic Mach numbers where piston 
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theory would not normally be considered to be applicable. 

Figure 7 shows the lowest flutter speed (flagged triangle) corresponds to a frequency ratio 

that is approximately twice the experimental value. This rapid change in flutter frequency is 

characteristic of a "hump" mode. Comparisons between calculated results and experiment for 

the remaining points indicate good agreement in flutter frequencies. 

Results for Wina 1B 

The flutter boundary for Wing lB ,  Fig. 8, predicted by FAST shows very good agreement 

with experiment. The supersonic results using ACUNN predict the general trend of experiment 

but go from being conservative to nonconservative as Mach number increases. It is interesting 

to note that the experimental flutter boundary drops slightly at Mach 2 and then begins to 

increase again. This feature is also apparent for Wing 1C. The piston theory results are again 

fairly good even at the lower supersonic Mach numbers. 

Pesults for   win^ IC: 

For Wing l C ,  FAST predicts a flutter boundary that is nonconservative although it  does 

predict the general trend of experiment as shown in Fig. 9. The boundary predicted by ACUNN is 

in good agreement with experiment for low supersonic cases but becomes nonconservative for 

higher Mach numbers. Piston theory also predicts a nonconservative flutter boundary for the 

higher Mach numbers in agreement with ACUNN. The experimental flutter boundary, as noted 

earlier, drops off at Mach 2 but this time to a greater extent. A possible cause of the drop in the 

flutter boundary is the presence of a shock created by the wedge shaped mounting system at the 

tunnel wall. Such a shock could alter the flow conditions that the model experiences and thus the 

flutter boundary. 
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Wina 2A Results 

The results calculated with FAST show the flutter boundary trend predicted for Wing 2A at 

subsonic Mach numbers. These results are shown in Fig. 10. Unfortunately there is no 

experimental data available in the subsonic region. The supersonic calculations with ACUNN and 

piston theory both predict a flutter boundary that is very conservative. The reason for this is 

not fully understood though a possible cause is that the finite element model could not be tuned to 

match the experimental frequencies within a few percent. In fact, the second vibration 

frequency could only be tuned to within 15% of the experimentally measured values, possibly 

causing the mode shapes to be insufficiently representative for accurate flutter analysis. 

Results for Win!! 28 

Figure 11 shows the subsonic FAST results predict a trend which appears to be a reasonable 

extrapolation of the experimental trend in the supersonic region. Such thin wings may not have 

a significant transonic dip and such an extrapolation of the flutter boundary is reasonable. The 

supersonic results for both ACUNN and piston theory are in very good agreement with 

experiment. 

Results for Wina 2C 

The subsonic flutter boundary predicted with FAST for Wing 2C again matches the trend of 

the supersonic data fairly well as seen in Fig. 12. Supersonic calculations with ACUNN and 

piston theory predict a flutter boundary that is nonconservative although they do predict the 

trend of the flutter boundary quite well. 
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C A P-TS D Ca I cu  I at i on s 

When using CAP-TSD for the 70 degree delta wing it was necessary to clip off 

(aerodynamically) 10% of the wing tip. The purpose for clipping the tip was to generate a grid, 

since lines must be extended from the leading and trailing edges to the outer boundary in a 

smooth fashion as shown in Fig. 14. The mode shapes used were from the full span model. The 

effect of clipping the wing for subsonic speeds was studied using FAST and it was found that 

clipping the wing up to 10% did not effect the calculated flutter boundary (Fig. 13). Since grid 

lines extending from the root to the outer boundary are of constant percent chord problems 

arise for highly swept wings - especially for ones with a low taper ratio. Because of high 

sweep, the grid becomes highly skewed and can cause poorer convergence. The low taper ratio 

also causes the grid lines to be tightly packed at the tip which gives rise to large changes in grid 

metrics. This can also give rise to poorer convergence. Thus care must be taken in gridding 

highly swept wings. 

The results shown in Figure 15 were calculated with CAP-TSD. Wing 1A was modeled as a 

flate plate. The flutter boundary was calculated for several Mach numbers and very good 

agreement with experiment was obtained. Comparing CAP-TSD with the subsonic results from 

FAST (Fig. 6) shows nearly identical agreement as should be the case. The good agreement 

indicates that CAP-TSD can be applied to a highly swept wing and builds confidence in the code 

prior to treating more complex configurations such as adding in thickness, fuselage, etc. 

Go ncl  ud i no Remarks 

The flutter characteristics of six delta wings were studied with leading-edge sweep angles 

ranging from 54" to 80". The aerodynamics used in solving the structural equations came from 

ACUNN, FAST, piston theory, and CAP-TSD. Comparisons among the different aerodynamic 



methods show that all the methods give fairly good results although the results shift from being 

conservative to nonconservative. 
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Fig. 4 Finite elment model for 70" delta wing 
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Fig. 5 Mode shapes for 70" delta wing 
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Fig. 10 Experimental and analytical flutter boundary for 
54" clipped delta wing 2A using linear and piston 
theory 
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Fig. 12 Experimental and analytical flutter boundary for 
71" clipped delta wing 2C using linear and piston 
theory 
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Fig. 15 Experimental and analytical flutter boundary for 
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